Determination of Unit Cell Parameter and One-Electron Model Potential of KCl by Using Soft X-Ray Absorption Spectra

Author(s):  
Yu.F. Migal
1998 ◽  
Vol 40 (12) ◽  
pp. 1965-1968
Author(s):  
Yu. F. Migal’ ◽  
A. A. Lavrent’ev ◽  
B. V. Gabrel’yan ◽  
I. Ya. Nikiforov

1987 ◽  
Vol 2 (4) ◽  
pp. 225-226
Author(s):  
Peter Bayliss ◽  
Slade St. J. Warne

AbstractMagnesium-chlorophoenicite may be differentiated from the Mn-analogue chlorophoenicite, because for magnesium-chlorophoenicite at 7Å, whereas for chlorophoenicite.In a review of the literature for the Mineral Powder Diffraction File by Bayliss et al. (1980), powder X-ray diffraction data could not be found of the mineral species magnesium-chlorophoenicite, (Mg,Mn)3Zn2(AsO4)(OH,O)6. Dunn (1981) states that the powder X-ray diffraction data of magnesium-chlorophoenicite is essentially identical to that of chlorophoenicite (Mn analogue) and confirms that the minerals are isostructural.With the crystal structure parameters determined by Moore (1968) for a Harvard University specimen from New Jersey of chlorophoenicite, a powder X-ray diffraction pattern was calculated with the programme of Langhof, Physikalische Chemie Institute, Darmstadt. The calculated pattern was used to correct and complete the indexing of the powder X-ray diffraction data of chlorophoenicite specimen ROM M15667 from Franklin, Sussex County, New Jersey, U.S.A. by the Royal Ontario Museum (PDF 25-1159). With the correctly indexed data of ROM M15667, the unitcell parameters were refined by least-squares analysis and are listed in Table 1.The most magnesium-rich magnesium-chlorophoenicite found in the literature is a description of Harvard University specimen 92803 from Franklin, Sussex County, New Jersey, U.S.A. by Dunn (1981), where Mg is slightly greater than Mn. A 114.6 mm Debye-Schemer film taken of HU92803 with Cu radiation and a Ni filter (CuKα = 1.5418Å) was obtained from Dr. P. Dunn and measured visually. The unit-cell parameters, which were refined by least-squares analysis starting from the unit-cell parameters of PDF 25-1159 in space group C2/m(#12), are listed in Table 1, and give F28 = 4.1(0.050,136) by the method of Smith & Snyder (1979).The hkl, dcalulated, dobserved and relative intensities (I/I1) of HU92803 are presented in Table 2. With the atomic positions and temperature factors of chlorophoenicite determined by Moore (1968), the Mn atomic positions occupied by 50% Mg and 50% Mn, and the unit-cell parameters of HU92803, a powder X-ray diffraction pattern was calculated and Icalculated is recorded in Table 2. A third powder X-ray diffraction pattern was calculated with the Mn atomic positions fully occupied by Mg. Because the atomic scattering factor of Mn is more than twice greater than Mg, chlorophoenicite may be differentiated from magnesium-chlorophoenicite based upon the calculated intensities of the first three reflections given in Table 3.Although the a, c and β unit-cell parameters of chlorphoenicite are similar to those of magnesium-chlorphoenicite, the b unit-cell parameter of chlorophoenicite is significantly greater than that of magnesium-chlorophoenicite (Table 1). The b unit-cell parameter represents the 0–0 distance of the Mn octahedra (Moore, 1968). Since the size of Mn is greater than that of Mg, chlorophoenicite may be differentiated from magnesium-chlorophoenicite based upon the b unit-cell parameter given in Table 1.American Museum of Natural History (New York, N.Y., U.S.A.) specimen 28942 from Sterling Hill, Ogdensburg, New Jersey is composed of willemite, haidingerite and magnesian chlorophoenicite. A spectrographic analysis of the magnesian chlorophoenicite shows As, Mg, Mn and Zn. Powder X-ray diffraction data (PDF 34-190) of the magnesian chlorophoenicite was collected by diffractometer with Cu radiation and a graphite 0002 monochromator (Kα1 = 1.5405) at a scanning speed of 0.125° 2θ per minute. The unit-cell parameters, which were refined by leastsquares analysis starting from the unit-cell parameters of PDF 25-1159, are given in Table 1. Specimen AM 28942 is called chlorophoenicite, because of its large b unit-cell parameter (Table 1), and the I/I1 of 25 for reflection 001 and of 50 for reflection 201 compared to the Icalculated in Table 3.


1996 ◽  
Vol 11 (1) ◽  
pp. 31-34 ◽  
Author(s):  
Nicole M. L. N. P. Closset ◽  
René H. E. van Doorn ◽  
Henk Kruidhof ◽  
Jaap Boeijsma

The crystal structure of La1−xSrxCoO3−δ (0≤x≤0.6) has been studied, using powder X-Ray diffraction. The crystal structure shows a transition from rhombohedral distorted perovskite for LaCoO3−δ into cubic perovskite for La0.4Sr0.6CoO3−δ. The cubic unit cell parameter is ac=3.8342(1) Å for La0.4Sr0.6CoO3−δ, the space group probably being Pm3m. Using a hexagonal setting, the cell parameters for La0.5Sr0.5CoO3−δ, are a=5.4300(3) Å, c=13.2516(10) Å; a=5.4375(1) Å, c=13.2313(4) Å for La0.6Sr0.4CoO3−δ; a=5.4437(1) Å, c=13.2085(5) Å for La0.7Sr0.3CoO3−δ; a=5.4497(2) Å, c=13.1781(6) Å for La0.8Sr0.2CoO3−δ and a=5.4445(2) Å, c=13.0936(6) Å for LaCoO3−δ with the space group probably being R3c.


1999 ◽  
Vol 14 (2) ◽  
pp. 456-459 ◽  
Author(s):  
V. Swamy ◽  
N. A. Dubrovinskaya ◽  
L. S. Dubrovinsky

Powder x-ray diffraction data of yttria (Y2O3) were obtained from room temperature to melting point with the thin wire resistance heating technique. A solid-state phase transition was observed at 2512 ± 25 K and melting of the high-uemperature phase at 2705 ± 25 K. Thermal expansion data for α–Y2O3 (C-type) are given for the range 298–2540 K. The unit cell parameter increases nonlinearly, especially just before the solid-state transition. The x-ray diffraction spectrum of the high-temperature phase is consistent with the fluorite-type structure (space group Fm3) with a refined unit cell parameter a = 5.3903(6) Å at 2530 K. The sample recrystallized rapidly above 2540 K, and above 2730 K, all the diffraction lines and spots disappeared from the x-ray diffraction spectrum that suggests complete melting.


2011 ◽  
Vol 26 (2) ◽  
pp. 155-158 ◽  
Author(s):  
David R. Black ◽  
Donald Windover ◽  
Albert Henins ◽  
James Filliben ◽  
James P. Cline

This report describes SRM 660b, the third generation of this powder diffraction SRM used primarily for determination of the instrument profile function (IPF). It is certified with respect to unit-cell parameter. It consists of approximately 6 g LaB6 powder prepared using a 11B isotopically enriched precursor material so as to render the SRM applicable to the neutron diffraction community. The microstructure of the LaB6 powder was engineered to produce a crystallite size above that where size broadening is typically observed and to minimize the crystallographic defects that lead to strain broadening. A NIST -built diffractometer, incorporating many advanced design features, was used to certify the unit-cell parameter of the LaB6 powder. Both type A, statistical, and type B, systematic, errors have been assigned to yield a certified value for the unit-cell parameter of a=0.415691(8) nm at 22.5°C.


2021 ◽  
Vol 7 ◽  
pp. 50-67
Author(s):  
R.I. Shaybekov ◽  
M.Yu. Sokerin ◽  
V.G. Kotelnikov ◽  
A.Yu. Lysyuk ◽  
G.V. Ignatyev ◽  
...  

The results of mineralogical, geochemical, X-ray, isotopic and spectroscopic studies of coarse-crystalline pyrite (Kyvvozh Formation, Dimtem’el Creek, Central Timan) are presented. Pyrite is characterized by cubic habit and zonal Co distribution. It contains galena, thorite, zircon, monazite, rutile, chlorite, muscovite, quartz, albite, apatite and calcite inclusions. The unit cell parameter of pyrite vary from 5.4137 ± 0.0002 to 5.4187 ± 0.0010 A and correspond to an ideal pyrite. The sulfur isotopic composition of coarse-crystalline pyrite of 15.8‰ indicates its formation as a result of sulfate reduction during epigenesis.


Sign in / Sign up

Export Citation Format

Share Document